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We derive the path integral representation of the conditional probability 
for a Markovian process starting from the master equation. Existing 
derivations require both the variable and the transition probability to be 
extensive. We show that this requirement may be relaxed if Langer's 
formula for the transition probability is used. We prove that different path 
integral representations appearing in the literature are in fact equivalent 
and correspond to various choices of an arbitrary parameter. 
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1. I N T R O D U C T I O N  

Recently, Kubo,  Matsuo,  and Ki tahara  (z) ( K M K )  showed that  in a thermo- 
dynamic system whose nonequil ibrium evolution can be described by a 
Markovian  master equation, the conditional probabili ty G(nt[noto) that  an 
extensive thermodynamic  variable has the value n at time t when starting 
at t = to f rom the initial value no can be written as a path integral, 

f ] G(nt [noto) = ~(n)  exp ds L(n(s),/z(s)) (1) 
L t o 

Here f ~(n)  represents the path integration and L(n, h) is a function o f  n 
and n, which we shall call in what  follows the Lagrangian. Such a representa- 
tion o f  the condit ional  probabili ty is useful; first, it is similar to the expression 
of  the part i t ion function in the renormalization group theory (2) and this 
similarity can be exploited to study the dynamics o f  critical phenomena.  (3,4) 
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Second, by maximizing the exponent f. ds L(n,  n), one can derive an equation 
J ~ 0  

for the most probable evolution of n( t )  in time. (5) 
The representation (1) is based on the assumption that the transition 

probability in the master equation can be written as (1,6) 

W(n --+ n + a) = f2w(n/f~; a) (2) 

where the jump a, the scaled quantity n/O,  and the function w are independent 
of the size f2 of the system. There are, however, situations in which this 
assumption is not valid; for example, in the case of a cluster growth in 
homogeneous nucleation, (5) the number of molecules in the cluster and the 
rate W are independent of the size fL Other such examples are various 
nonuniform systems for which the variables of interest are the densities (or 
some order parameter) at each point of the system. 

The purpose of this paper is twofold. First we show that the path 
integral representation is possible when the assumption of  Eq. (2) is not valid 
if W is given by 3 

e x p ( -  a2/2 A ) . . . . .  
W ( n - +  n + a) = ~ expl-/~l~(n + a) - F(n)]/2} (3) 

Here F is the free energy of the system,/3 = 1/kT, and A is a constant. 
Second, we show that various existing path integral representations of 

G, (3,4'9) though derived from different starting points and looking quite 
different, are in fact equivalent with the one given here. This allows the use 
of the simplest among them and eliminates a potential cause of confusion. 

Throughout this paper we restrict ourselves to the case of one variable. 
The infinite-variable case, describing nonuniform systems, can be discussed 
in a similar manner. (1~ 

2. PATH I N T E G R A L  R E P R E S E N T A T I O N  OF THE 
C O N D I T I O N A L  PROBABIL ITY  

We derive here the path integral representation of  the conditional prob- 
ability and show that if A in Eq. (3) is a small parameter, then the representa- 
tion (1) is possible. To do this, we obtain the conditional probability 
G(n, t + A t  [no, t) for a very short At. The result is given by Eq. (14). The 
smallness of A is used to ensure the convergence of various expansions. The 
conditional probability for arbitrary times can be computed from that at 
short times by using Eq. (15). This leads to the path integral representation 
[Eqs. (16)-(17) which has the desired form [Eq. (1)]. 

s The proof of the statement can be made if it is required that W(n ~ n + a) be a 
sharply peaked function of a. We prefer to use the specific Gaussian form Eq. (3) 
since it has been found useful in applications (see Refs. 3-5, 7, and 8). 
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We start  with the mas ter  equat ion (z) 

.r OP(n, t)/Ot = - H ( n ,  O/On)P(n, t) (4) 

with H(n, O/On) defined by 

n(n, O/On) = ~ (1 - e-"Ol~ -+ n + a) 
t z  

= ~ (-1)m+l(1/mO(O/On)m~amW(n--+n + a) (5) 
m=l e 

For  small t ime intervals At, the change of  the probabi l i ty  is 

P(n, t + At) = {1 - (At/r)H(n, O/an)}P(n, t) + O(At/-& (6) 

U p  to the order  O(At/-c), Eq. (6) is equivalent  to 

P(n, t + At) = {1 -- tz(At/r)H(n, O/On)} 

x {1 - (1 - ix)(At/~-)H(n, O/On)}P(n, t) 

+ O(At/~-) 2 (7) 

Fo r  purposes  of  compar i son  with previous work,  we have introduced an 
arbi t rary  parameter /~  by adding and subtract ing the same quantity.  Assuming 
tha t  (Ok/On~)W(n--~ n + a)P(n, t) vanishes sufficiently fast for  large lnl and 
for  all k, we take the Fourier  t ransform,  

~ dn e-'k~{1 - (1 - t~)(At/-c)H(n, O/On)}P(n, t) 
o o  

= dn e-~n{1 - (1 - ~)(At/r)H(n, ik)}P(n, t) (8) 
oo 

Taking  the inverse t rans form of  Eq. (8) and put t ing it into Eq. (6) we obtain 

P(n, t + At) = {1 - ~,(zXt/,)H(n, O/On)} 

x (1[2~-) dk dno e'k(n-"o){1 - (1 - ix)(At/z)H(no, ik)} 
- o o  - o 3  

x P(no, t) + O(At/~-) 2 (9) 

For  small At/r we can approx imate  1 -- a At/r m. e -~At/* and,  using Eq. (5) ,  
we have 

f ; {  f; P(n, t + At) = dno (1/2rr) dk exp[ik(n - no) - / z (At /v )  
co oo 

x ~ { W(n ~ n + a) - [ e x p ( -  ika)] W(n - a -+ n)} 
g 

- ( 1  - t~)(At/r) ~ [1 -- exp(-ika)]W(no -+ no + a)]}- 
) 

x P(no, t) + O(At/r) 2 (10) 
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So far we have not used the form (3) for the transition probability. For this 
choice of the transition probability we can compute 

(1 - e-~e~)W(n --~ n + a) 

= - ((a2)/2)[flikF'(n) - k 2] + O((a~)) (11) 

~,  { w ( n - +  n + a) - e - ~ ~  - a - + n ) )  

= -((a2)/2)[[3F"(n) + [3ikr'(n) - k 2] + O((a4)) (12) 

Inserting these functions into Eq. (I0) and integrating over k, we obtain 
for the short-time evolution of  the probability 

P(n, t + a t )  = dno a(n, t + Atlno, t)P(no, t) + O(At/~.)~ (13) 
- r i o  

where the kernel 

G(n, t + Atlno, t) 

t 2(a 2)~" [ ~ t  ~ (a2) ~(a2) ]2 = exp At[ + /~F'(n0)(1 - ~) + [~F'(n)t~ 

(a~) } 
+ 7 ,  At ~flF"(n) (14) 

is the conditional probability for the short time interval At. 
For finite time intervals, we partition the time axis to < tl < .-. < tz~ = t 

and the conditional probability is 

G(n, tlno, to) = f dnN_z ... f dnl G(n, t[nN_l, tN_l) ... G(nl, q[no, to) (15) 

Using Eq. (14) for the conditional probabilities for small interval tj - tj_l = 
At and taking the limit of At ~ 0 (i.e., N--~ oo), we obtain 

= ~.@(n) e x p I _  -r t +. ~ F'(n(s))] G(n, t lno, to) 

Thus the Lagrangian in Eq. (1) is 

L(n, h) = -(r/2(a=)){[li + (~(a2)/2r)F'(n)] 2 - ((a2)/r)21xtgF"(n)} (17) 

We emphasize that the only difficulty in such calculations is finding 
a small parameter that ensures the convergence of all the expansions. In 
K M K  the parameter is the f2 - ~, the inverse of the size of the system. In the 
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present case, it is essentially ~ t o  be more precise, products of A and various 
derivatives of the free energy. The concrete expressions can be easily derived 
by analyzing the expansions. Physically, A is the largest change in n that has a 
finite probability [see Eq. (3)]. If the time scale r in the master equation is 
small, A becomes small. Therefore Eq. (17) is accurate when the time scale 
is so small that A multiplied by the derivatives of the free energy is small. 

3. C O M P A R I S O N  W I T H  P R E V I O U S  W O R K  

The Lagrangian, Eq. (17), is not uniquely determined, because of the 
presence of the arbitrary parameter/z.  We have introduced this parameter 
in going from Eq. (6) to Eq. (7) in such a manner that the resulting formulas 
will not depend on t~. All results corresponding to different choices of t~ 
must therefore be equivalent. In what follows we show that different formu- 
las derived in the literature for L correspond to different values of  t ~ in Eq. 
(17). K M K  (1) derived a formula corresponding to t~ = 0 [they used Eq. (2) 
for W]. Yahata (a> started from the Fokker-Planck equation and has derived 
a formula which, once adapted to our choice of W, corresponds to t~ = 1. 
Graham, (9) starting from a Langevin equation, obtains a formula, which, 
upon modification to correspond to our choice of W, corresponds to t~ = 1/2. 
The parameter/L, being at our disposal, can be chosen in the most convenient 
form for a given purpose. For example, if we want to obtain the most prob- 
able evolution, it is most convenient to choose t~ = 0. Then the Lagrangian 
(17) is a quadratic form and we see immediately that the most probable path 
is given by 

it + (~(a2)/2~-)F'(n) = 0 (18) 

The arbitrariness of the Lagrangian (17) may be illustrated in a different 
manner for the simple example of a Gaussian process. Let us start from a 
Langevin equation 

it(t) + (fl(a2}/Zr)V'(n(t)) = f ( t )  (19) 

obtained from Eq. (18) by adding the Gaussian random force f ( t ) .  I f  we 
assume that the random force is a Wiener process, we have for each path the 
weight (9,m 

P(f (s ) )  ~-I  df(s) 
to<S<t 

= exp[-(1/2,)fro dsf2(s)] to <I~<t (~-~t~) zt2df(s) (20) 

The constant y is introduced to give the variance of the random force 

( f ( s ) f ( s ' ) }  = 73(s - s') (21) 
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The conditional probability of  changing from no to n is given by the path 
integral 

G(n, tlno, to) = f ~(f) exp[-(1/2~,) fto ds f2(s)] (22) 

In order to derive the equivalent of Eq. (16) for the process (19), we must 
change the variable of integration f romf(s )  (to < s < t) to n(s) (to < s < t). 
To do this, we discretize the time as 

to < tl < . . -< tN_ l  < t N = t  

and rewrite Eq. (19) as 

At + ~ [/zr'(n,+ 1) + (1 - /z)F'(n~)] = f~+l, 

i = 0 , 1 , . . . , N -  1 (23) 

with n~ =- n(tO, f~ = f(tO, and At - t~+ 1 - t~. Indeed, for At--> 0, Eq. (23) 
is equivalent to Eq. (19). Equation (23) is the transformation of variables 
fromf~ (i = 1, 2 ..... ,, N - 1) to n~ (i = 1, 2, ..., N - 1) and the Jacobian is 

~(fl,f2, ...,fN-1) ~ ~f~ (1 '~zr [ fl(~r ) N-z ] 
0(nl, n2 .... , nN-z) = ~=~ ~ = \A-t] exp At /L ,=1 ~ F"(nO (24) 

Introducing Eqs. (19) and (24) in Eq. (22), we obtain 

G(n, tlno,to) oc f ~(n) exp[(t3(a2~/2"Ot~ ft~o ds F"(n(s))] 

x exp - (1/27)  ds[h(s) + (fl(a2)/2~r)r'(n(s))] 2 (25) 
o 

This equation is the same as Eq. (16) (7 = (a2)/~) and again the parameter 
/~ is arbitrary. The appearance of/~ is due to the fact that there is no unique 
way of writing the discrete correspondent Eq. (23) of the continuous equation 
(19), 
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